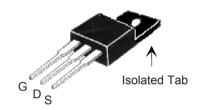


Preliminary Technical Information

PolarHV[™] Power MOSFET

IXTP 8N50PM

 $V_{DSS} = 500 V$ $I_{D25} = 4 A$ $R_{DS(sc)} \le 0.8 \Omega$


(Electrically Isolated Tab)

N-Channel Enhancement Mode Avalanche Rated

Symbol	Test Conditions	Maximum	Maximum Ratings			
V _{DSS}	$T_J = 25^{\circ} \text{ C to } 150^{\circ} \text{ C}$	500	V			
V _{DGR}	$T_J = 25^{\circ} \text{ C to } 150^{\circ} \text{ C}; R_{GS} = 1 \text{ M}\Omega$	500				
V _{GS}	Continuous	± 30	V			
V _{GSM}	Transient	± 40				
I _{D25}	$T_{\rm C}$ = 25° C	4	A			
	$T_{\rm C}$ = 25° C, pulse width limited by $T_{\rm JM}$	14	A			
I _{AR}	T _c = 25° C	8	A			
E _{AR}	T _c = 25° C	20	mJ			
E _{AS}	T _c = 25° C	400	mJ			
dv/dt	$I_S \leq I_{DM}$, di/dt ≤ 100 A/ μ s, $V_{DD} \leq V_{DSS}$, $T_J \leq 150^{\circ}$ C, $R_G = 18 \Omega$	10	V/ns			
P_{D}	T _C =25°C	41	W			
T _J		-55 +150	°C			
T _{JM}		150	°C			
T _{stg}		-55 +150	°C			
T _L	1.6 mm (0.062 in.) from case for 10 s	300	°C			
T _{SOLD}	Plastic body for 10 s	260				
M _d	Mounting torque	1.13/10	Nm/lb.in.			
Weight		4	g			

OVERMOLDED TO-220 (IXTP...M) OUTLINE

G = Gate D = Drain S = Source

Features

- Plastic overmolded tab for electrical isolation
- ¹ International standard package
- Unclamped Inductive Switching (UIS) rated
- Low package inductance
 - easy to drive and to protect

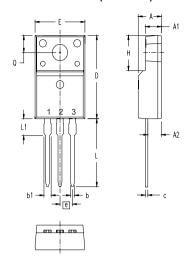
Symbol $(T_J = 25^{\circ} C, t)$				aracter Typ.	ristic Values Max.	
BV _{DSS}	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$		500			V
$V_{\rm GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$		3.0		5.5	V
I _{GSS}	$V_{GS} = \pm 30 V_{DC}, V_{DS} = 0$				±100	nA
I _{DSS}	$V_{DS} = V_{DSS}$ $V_{GS} = 0 V$	T _J = 125° C			5 50	μA μA
R _{DS(on)}	V_{GS} = 10 V, I_{D} = 4 A Pulse test, t ≤300 µs, duty	cycle d ≤ 2 %			0.8	Ω

Advantages

- Easy to mount
- Space savings
- ¹ High power density

© 2006 IXYS All rights reserved DS99582E(04/06)

Symbo	ol	Test Conditions	Characteristic Values		
		$(T_{J} = 25^{\circ} C, ur)$	_j = 25° C, unless otherwise specified)		
		Mi	n.	Тур.	Max.
g_{fs}		$V_{DS} = 10 \text{ V; } I_{D} = 4 \text{ A}$	5	8	S
C _{iss})			1050	pF
\mathbf{C}_{oss}	}	$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$		120	pF
C _{rss}	<u> </u>			12	pF
$\mathbf{t}_{d(on)}$)			22	ns
t _r	Ţ	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \text{ V}_{DSS}, I_{D} = 8 \text{ A}$		28	ns
$\mathbf{t}_{d(off)}$		$R_{_{\rm G}}$ = 18 Ω (External)		65	ns
t _f)			23	ns
$\mathbf{Q}_{g(on)}$)			20	nC
\mathbf{Q}_{gs}	}	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \text{ V}_{DSS}, I_{D} = 4 \text{ A}$		7	nC
\mathbf{Q}_{gd}	J			7	nC
R _{thJS}					3.0 ° C/W


Source-Drain Diode

Characteristic Values

(T_. = 25° C, unless otherwise specified)

Symbol	Test Conditions	Min.	Тур.	Max.	
I _s	V _{GS} = 0 V			8	Α
I _{sm}	Repetitive			14	Α
$\mathbf{V}_{\mathtt{SD}}$	$I_F = I_S, V_{GS} = 0 \text{ V},$ Pulse test, t ≤300 µs, duty cycle d≤ 2 %			1.5	V
t _{rr}	$I_F = 3 \text{ A}, V_{GS} = 0 \text{ V}, V_{R} = 100 \text{ V}$ -di/dt = 100 A/ μ s		400		ns

ISOLATED TO-220 (IXTP...M)

Terminals:

1 - Gate 2 - Drain (Collector)

3 - Source (Emitter)

 SYM
 INCHES
 MILLIMETERS

 MIN
 MAX
 MIN
 MAX

 A
 .177
 .193
 4.50
 4.90

 AI
 .092
 .108
 2.34
 2.74

 A2
 .101
 .117
 2.56
 2.96

 b
 .028
 .035
 0.70
 0.90

 b1
 .050
 .058
 1.27
 1.47

 c
 .018
 .024
 0.45
 0.60

 D
 .617
 .633
 15.67
 16.07

 E
 .392
 .408
 9.96
 10.36

 e
 .100
 BSC
 2.54
 BSC

 H
 .255
 .271
 6.48
 6.88

 L
 .499
 .523
 12.68
 13.28

 L1
 .119
 .135
 3.03
 3.43

 ØP
 .121
 .129
 3.08
 3.28

 O
 .126
 .134
 3.20
 3.40

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from data gathered during objective characterizations of preliminary engineering lots; but also may yet contain some information supplied during a pre-production design evaluation. IXYS reserves the right to change limits, test conditions, and dimensions without notice.